HYDROGRAPHIC REPORT

Reintraid Finfish Pen Site, Loch a' Chàirn Bhàin, Sutherland

Prepared for

Loch Duart Ltd

Badcall Salmon House Scourie Sutherland IV27 4TH

TransTech Limited Caerthann House Connel Argyll PA37 1PQ Scotland

TransTech Environmental is the trading name of TransTech Limited, registered in Scotland (reg. number: SC175087)

Quality Assurance

The data presented within this document have undergone a quality assurance review which follows established TransTech Ltd procedures. The information and results presented herein constitute an accurate representation of these data.

Author:

Issue Date: 13 January 2023

Issue No: 2023v1

CONTENTS

1.	INTR	ODUCTION	. 4
2.		ROGRAPHIC SURVEY DETAILS	
	2.1	ADCP Deployments	. 4
	2.2	GPS Calibration	. 5
		Pitch, Roll and Heading	
3.	DATA	PROCESSING	. 6
	3.1	Magnetic North to Grid North Conversion	. 6
	3.2	Speed and Direction Data Patching	. 6
	3.3	90 Day Dataset	. 7
4.	DISC	USSION & CONCULSIONS	10
REF	EREN	ICES	11
APF	PEND	IX A - LOCATIONS OF ADCP DEPLOYMENTS	12

List of Figures

Figure 1.	Schematic diagram of mooring array.	4
	BGS Magnetic North to Grid North conversion.	
Figure 3.	Summary data for sub-surface bin during the 90-day period.	8
	Summary data for net-bottom bin during the 90-day period	
•	Summary data for near-bed bin during the 90-day period1	
5	5	

List of Tables

Table 1.	Set-up details of the ADCP used during the survey.	4
Table 2.	Deployment details of the ADCP used during the survey.	5
	Deployment distances from group centre	
	Set-up and deployment details of the ADCP used during survey.	
	Current speed during the 90-day period	
	Summary data for the 3 bins during the 90-day period.	

List of Abbreviations

- Acoustic Doppler Current Profiler Admiralty Total Tide ADCP
- ATT
- British Geological Survey BGS
- CD Chart Datum
- GMT Greenwich Mean Time
- GPS **Global Positioning System**
- LST Lowest Spring Tide
- Mean Sea Level MSL
- Ordnance Survey OS
- OSGB36 Ordnance Survey Great Britain 1936
- SEPA Scottish Environment Protection Agency

1. INTRODUCTION

This report has been prepared by TransTech for current meter data collected by Loch Duart at their Reintraid site in Sutherland. Three consecutive deployments were performed in order to obtain 90 days of data for use in NewDEPOMOD modelling of a modification to the site.

2. HYDROGRAPHIC SURVEY DETAILS

2.1 ADCP Deployments

A 300 kHz Teledyne RDI Workhorse was used for all three deployments (serial number: 11132). This was mounted in a gimballed seabed frame and deployed using a single-point mooring arrangement (Figure 1). The mooring was positioned where local topographic features and other features such as mooring lines would not cause spurious data collection. For each deployment the transducer head was located 0.60 m from the base of the seabed frame.

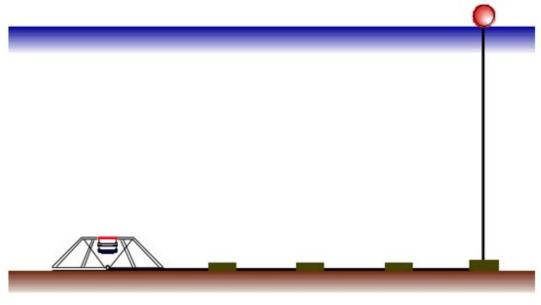


Figure 1. Schematic diagram of mooring array.

The instrument was set-up and deployed as described in Tables 1 and 2 respectively. Ensemble length was 1200 seconds (i.e., 20 minutes).

Start of Reported Dataset (time in GMT)	End of Reported Dataset (time in GMT)	Pings/Ensemble	Bin Size (m)	Total No. Bins	Standard Deviation (cm/s)
12/08/22 12:00:00	12/09/22 08:20:00	600	1.0	59	0.563(Sub-Surface Bin)0.568(Net-Bottom Bin)0.557(Near-Bed Bin)
12/09/22 12:48:53	11/10/22 07:48:53	610	1.0	59	0.544(Sub-Surface Bin)0.558(Net-Bottom Bin)0.554(Near-Bed Bin)
12/10/22 10:02:57	10/11/22 12:02:57	610	1.0	59	0.502 (Sub-Surface Bin) 0.539 (Net-Bottom Bin) 0.551 (Near-Bed Bin)

Table 1. Set-up	details of the	ADCP used	during	the survey.

Position of reported bins (m above seabed)		ADCP Deployment Position*	Start of Reported Dataset (time in GMT)	End of Reported Dataset (time in GMT)	No. of 20 minute Ensembles	Depth** (mCD) [†]
Sub-Surface: Net-Bottom: Near-Bed:	52.86 45.86 2.86	219228.71 E, 934034.52 N (N 58° 15.46301', W 05° 4.96202')	12/08/22 12:00:00	12/09/22 08:20:00	2222	57.29 (59.2)
			stitch 90	set patched to) dataset §3.2)	12	
Sub-Surface: Net-Bottom: Near-Bed:	56.61 49.61 3.61	219222.41 E, 934045.94 N (N 58° 15.46900', W 05° 4.96899')	12/09/22 12:48:53	11/10/22 07:48:53	2074	61.27 (60.1)
			stitch 90	set patched to) dataset §3.2)	78	
Sub-Surface: Net-Bottom: Near-Bed:	54.61 47.61 3.61	219219.86 E, 934033.05 N (N 58° 15.46200', W 05° 4.97099')	12/10/22 10:02:57	10/11/22 12:02:57	2095	59.19 <i>(58.5)</i>

Table 2. Deployment details of the ADCP used during the survey.

* Positions recorded relative to WGS84 datum. OS GridInquest was used to convert the WGS84 coordinates to OSGB36.

** A large vessel was used for deployment and recovery and it was therefore difficult to get a precise depth at the deployment location using the on-board sounder or a handheld unit. As such, the ADCP's pressure sensor results are deemed to be more accurate and it is these that have been used for bin height determination (NB: the depths in brackets are the mean of depth soundings at deployment and recovery).

[†] Correction is from Admiralty Total Tide predicted tidal amplitude at Loch Nedd.

2.2 GPS Calibration

Positions were recorded relative to WGS84 datum using a Garmin GPSMap 78s. Prior to its use on each deployment/recovery it was checked against a second Garmin GPSMap 78s to ensure that it was functioning correctly.

During deployment position was recorded when the ADCP's frame landed on the seabed immediately prior to the tension on the winch cable being slackened. At recovery it was taken as soon as the winch cable was observed to begin lifting the frame. These waypoints were taken at the winch cable i.e., directly above the gimbal.

The displayed accuracy of the GPS for each deployment/recovery was $\leq \pm 3$ m.

Table 3 gives deployment distances from the existing group centre.

Table 3. Deployment distances from group centre.

Group Centre Position	ADCP Deployment Position	Start of Reported Dataset (time in GMT)	End of Reported Dataset (time in GMT)	Distance (m)
	219228.71 E, 934034.52 N	12/08/22 12:00:00	12/09/22 08:20:00	149.3
219083.09 E, 934067.66 N	219222.41 E, 934045.94 N	12/09/22 12:48:53	11/10/22 07:48:53	141.0
	219219.86 E, 934033.05 N	12/10/22 10:02:57	10/11/22 12:02:57	141.1

2.3 Pitch, Roll and Heading

The changes in pitch, roll and heading during the deployments are shown in Table 4. These were <5° which are well within the ADCP's tolerances for auto-correction of the data and significantly below SEPA's maximum of $20^{\circ(1)}$.

Start of Reported Dataset (time in GMT)	End of Reported Dataset (time in GMT)	Maximum Pitch (degrees)	Maximum Roll (degrees)	Maximum Change in Heading (degrees)
12/08/22 12:00:00	12/09/22 08:20:00	3.89	1.41	2.86
12/09/22 12:48:53	11/10/22 07:48:53	2.53	1.86	4.15
12/10/22 10:02:57	10/11/22 12:02:57	2.37	4.08	1.91

Table 4. Set-up and deployment details of the ADCP used during survey.
--

3. DATA PROCESSING

3.1 Magnetic North to Grid North Conversion

Current direction was collected in degrees Magnetic North and is reported in this document relative to Grid North.

During the deployment magnetic north was approximately 17' (0.2833°) east of Grid North (obtained from <u>Grid Magnetic Angle Calculator Results (bgs.ac.uk)</u>, Figure 5). The hydrographic data were corrected from Magnetic North to Grid North by adding 0.2833° to the magnetic north direction data using SEPA's HG_data_analysis_v7.11.xls tool (rev 12).

Grid Magnetic Angle Calculator Results

Magnetic north is estimated to be 0 deg 17 min EAST of grid north (British National Grid) at this location in July 2022. Unable to generate map.

Figure 2. BGS Magnetic North to Grid North conversion.

3.2 Speed and Direction Data Patching

On 12/09/22 and 11/10/22 the ADCP was recovered and the data downloaded by Loch Duart Ltd to ensure that the ADCP was operating as intended. This was found to be the case and on both occasions the ADCP was redeployed after a battery change. The recoveries and redeployments resulted in gaps in valid data of 4 hours (12 ensembles) and 26 hours (78 ensembles) respectively.

The gaps in the data were patched using speeds and directions for which data was gathered at the same times in the tidal cycle.

SEPA will have the worksheet used to patch the data as this was previously provided in a spreadsheet titled "Stitching of Deployments A,B & C.xlsx". However, given the LST during the deployment the sub-surface bin reported within this document is 1 m higher than that reported previously to comply with SEPA's c. 5 m below LST threshold. Also, the net-bottom bin is now 2 m lower than that previously reported as in water net depth is expected to be 15 m. The data for the revised bin heights is provided in the accompanying directory/spreadsheet "Sub-surface bin higher & net-bottom bin lower than previously reported/Stitching of Deployments A,B & C (revised M & S bin heights).xlsx".

3.3 90 Day Dataset

The following pages contain tabulated and graphic outputs for the selected sub-surface, net-bottom and near-bed bins for the 90-day dataset. This data was previously provided to SEPA in spreadsheets named: "Reintraid_90 days_hgdata_analysis_v7-S.xls", "Reintraid_90 days_hgdata_analysis_v7-S.xls", "Reintraid_90 days_hgdata_analysis_v7-B.xls", albeit a 1 m higher sub-surface bin and a 2 m lower net-bottom bin has subsequently been reported herein. The data for these bins is contained within the "Sub-surface bin higher & net-bottom bin lower than previously reported" directory which accompanies this document.

Table 5 provides mean speed, ranked percentage of the mean current speed and ≤0.095 m/s as a ranked percentage within the current speed record for the sub-surface, net-bottom and near-bed bins.

Table 6 shows the tidal ellipse major axis used; the decomposition of easterly and northerly vector components relative to the tidal ellipse major axis; and the tidal current amplitude relative to the tidal ellipse major axis.

Note according to Admiralty Total Tide (ATT) the Mean Sea Level (MSL) at Reintraid is 2.8 m above Chart Datum (based on Loch Nedd, the nearest location for which this data is available). The lowest spring tide during the 90 day deployment was 0.4 m above Chart Datum which according to the ADCP data and ATT occurred on 14/08/2022 and 12/09/2022. Also note that the in water net depth is expected to be 15 m.

Bin	Mean speed (m/s)	Percentage ≤0.095 m/s	Amplitude anisotropy	Residual speed (m/s)	Residual Direction (°Grid N)
Sub-Surface					
1st dataset:4.83 m below LST2 nd dataset:4.98 m below LST3 rd dataset:5.06 m below LST	0.06	81%	2.14	0.03	318
Net-Bottom					
1st dataset:14.23 m below MSL2nd dataset:14.46 m below MSL3rd dataset:14.38 m below MSL	0.06	87%	2.43	0.01	324
Near-Bed	0.04	97%	1.50	0.01	354

Table 5. Current speed during the 90-day period.

Table 6. Summary data for the 3 bins during the 90-day period.

Bin	Tidal ellipse major axis	Components of current residual (m/s) Parallel (U) Normal (V)			ts of tidal current tude (m/s)
Diri	Bearing (°Grid N)			Parallel (U)	Normal (V)
Sub-Surface	315	0.034	0.002	0.086	0.040
Net-Bottom	315	0.014	0.002	0.085	0.035
Near-Bed	335	0.007	0.002	0.051	0.034

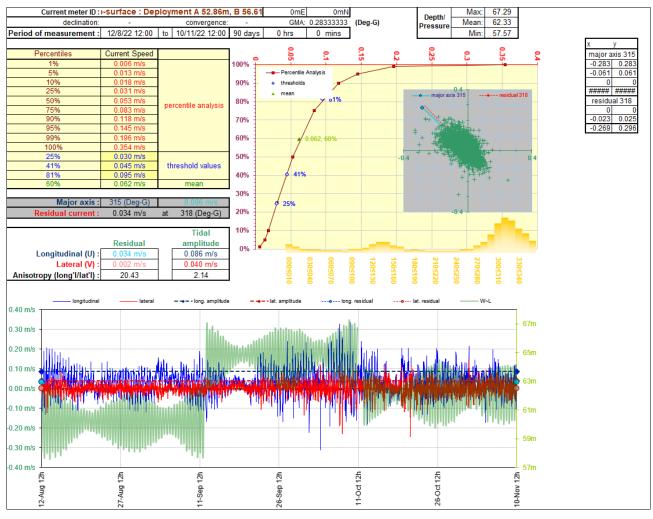


Figure 3. Summary data for sub-surface bin during the 90-day period.

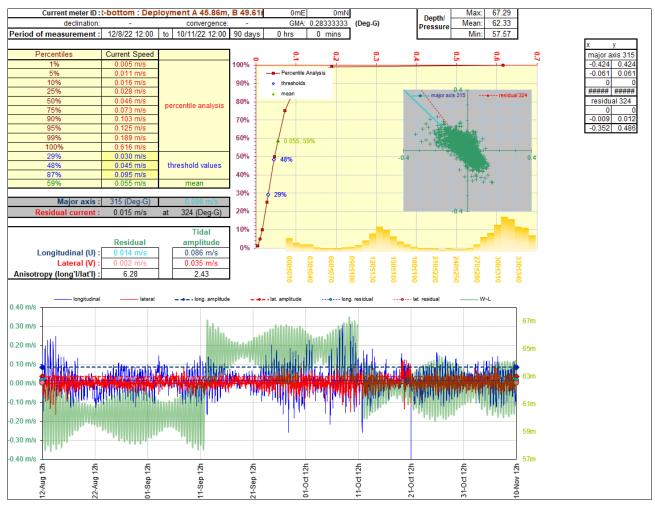


Figure 4. Summary data for net-bottom bin during the 90-day period.

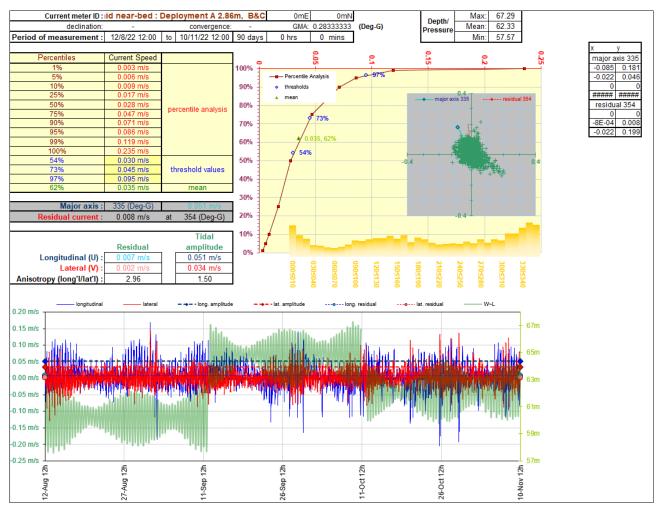


Figure 5. Summary data for near-bed bin during the 90-day period.

4. DISCUSSION & CONCULSIONS

The pressure sensor's depth record indicates that the ADCP remained undisturbed. There were some short-term changes in pitch, roll and heading during the 90-day dataset but these were minor and well within the ADCP's tolerances for auto-correction of the data.

The sub-surface and net-bottom bin heights reported in this document meet the criteria specified in Hydrographic Data for Aquaculture Application⁽¹⁾ i.e., $\leq \pm 1$ m from the bottom of the nets at MSL and circa 5 m below LST during the deployment for the sub-surface bin. Note that it is proposed to "weight" the bin heights and deployment depth for NewDEPOMOD modelling as described in the accompanying document "Reintraid_2023v1_ND_Modelling_Method_Statement.pdf".

However, the near-bed bin for the latter two deployments slightly exceeds SEPA's threshold of 3 m above the seabed⁽¹⁾. Nevertheless, it is noted that in 2020 SEPA NewDEPOMOD modelled this site with a higher near-bed bin height (i.e., 3.8 m above the seabed) and indeed previous AutoDEPOMOD modelling (2011) and TransTech's NewDEPOMOD modelling reported in February 2022 was consented using this near-bed bin height.

The site and hydrographic survey reported in this document is considered to comply with the requirements of SEPA's guidelines⁽¹⁾ and the 90-day current speed and direction data are considered representative of conditions at the Reintraid site on Loch a' Chàirn Bhàin.

REFERENCES

⁽¹⁾ Hydrographic Data for Aquaculture Applications. Scottish Environment Protection Agency. September 2022.

APPPENDIX A - LOCATIONS OF ADCP DEPLOYMENTS

