

ANDERSON MARINE SURVEYS

Report To: Scottish Sea Farms

Issued By: SJA

Date: 24 May 2024

Fish Holm Dye and droque dispersion study

Introduction

Site-specific quantification of dispersion is important for the proper use of the particle tracking and dispersion models used in assessment of the environmental effects of pen aquaculture. Discharges to a water body, either as a single patch or a continuous plume, are transported and dispersed by a mixture of advective flow (e.g. tidal movement) and non-advective mixing. Non-advective dispersion has both horizontal and vertical components, and the models AutoDepomod, NewDepomod and BathAuto incorporate a standard nominal value of the horizontal component, K, of 0.1 m²/s. However, typical reported values of K measured using dye patch dispersion in coastal waters range widely (e.g. from 0.02 – 2.17 m²/s; Elliott et al 1997; Morales et al 1997). Significantly higher values of dispersion have also been reported using alternative methods; e.g. SAMS drifters (14.8 m²/s in the Sound of Mull; Cromey et al 2001).

The principal mechanisms of dispersion vary with physical and time scales; from molecular diffusion at small scales, to turbulence and advective shear at intermediate scales (1-1000m) and oceanic processes at very large scales. Many of the intermediate and large-scale processes will be influenced by site-specific topographic and hydrodynamic characteristics; and therefore variability of K between and within model domains, and over time, may be significant.

Long-term (2h-1 month), and large-scale (30m-100km) dispersion is classically illustrated as an "Okubo diffusion plot" (or "oceanic diffusion diagram"), Figure 1, of variance vs time on logarithmic scales. Various field data indicate a consistent increase in variance¹, which corresponds to diffusivity increasing over time, and dispersion over timescales of a tidal cycle or more (>12.5h) considerably greater than the nominal $0.1 \text{ m}^2/\text{s}$.

¹ The relationship between variance and diffusivity for a Gaussian representation of plume or patch processes is described below

Site-specific quantification of dispersion over relevant spatial and timescales is therefore an important component of validating models used to predict environmental effects of pen aquaculture. This report describes dispersion measurement at the of the proposed Fish Holm production site, at the east entrance to Yell Sound, Shetland (Figure 2), to support Numerical Hydrodynamic Modelling (NHM) of the adjacent area.

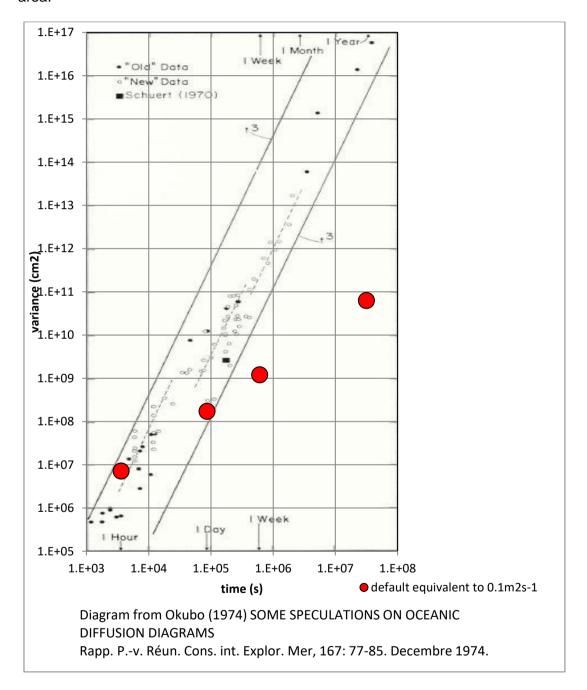


Figure 1. Okubo diffusion plot. Nominal variance for 0.1 m²/s diffusivity also shown.

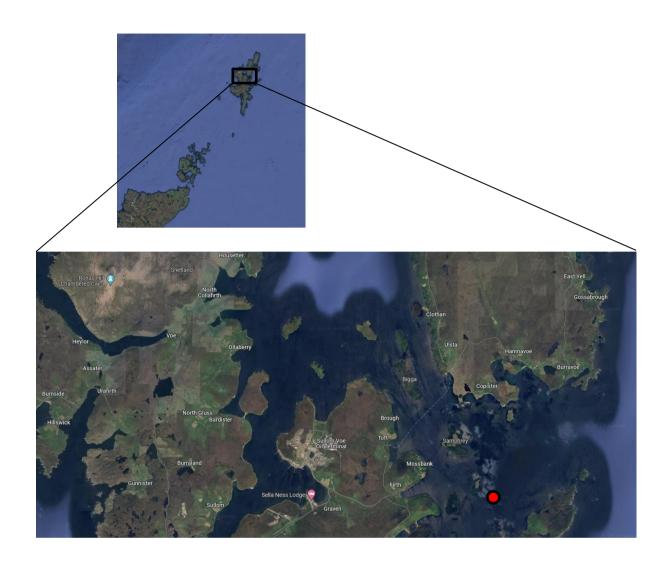


Figure 2. Fish Holm general location (red)

Survey methods

Positioning was provided by a Simrad NSS7 evo2 echosounder/chart plotter (vertical resolution 0.1m), logging directly to PC at 1s intervals. Previous calibration indicates that the single fix accuracy of this instrument is consistently <2m.

Two Nortek Eco ADCPs were deployed on 22 April 2024 and recovered on 24 April 2024. One instrument was deployed on a suspended mooring (i.e. constant depth below surface) and the other in an inline frame immediately above seabed (i.e. constant height above bed). Mooring locations and depths are shown below:

	latitude	longitude	OSGB36 E	OSGB36 N	average depth (m below surface)
Fish Holm suspended	60.44313	-1.1197	448544	1173581	11.89
Fish Holm suspended	60.44257	-1.1193	448567	1173519	9.15

Declination for the survey location and date was 0.38°W; grid convergence 0.77° and Grid Magnetic Angle² 1.15°W.

Dye and drogue releases were carried out in moderate wind conditions (N or NE 2-5) on 22, 23 and 24 April 2024, with eight dye releases of duration 0.5 - 1.25 hours.

Following each release, dye concentration in surface water (approximately 50cm depth) was measured with a Unilux fluorometer mounted on a rigid over-side pole, logging to PC.

Drogue releases were also carried out simultaneous to the dye releases, using four standard-pattern drogues with reduced sail depth (≈1m, due to relatively shallow water depths), fitted with GlobalSat GPS dataloggers recording at 10min intervals. Release 7 was extended, with a total duration of 08:07 hours during which time two drogues were lost.

² From http://www.geomag.bgs.ac.uk/navigation.html

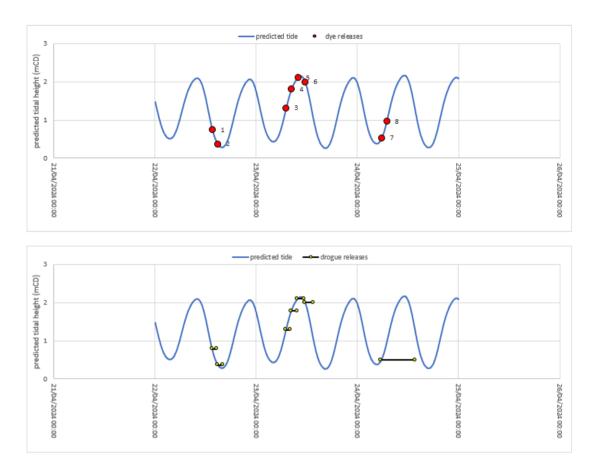


Figure 3. Timing of dye (top) and drogue (bottom) releases in relation to tidal cycle

Data analysis

Following discussions of similar survey programmes with SEPA, dye concentration contour plots are not considered to be the most appropriate approach to data analysis; since this requires multiple transects of the patch in different directions which increases disturbance of the patch, introduces errors associated with the elapsed time of the transects (during which the patch size, shape and position will change), and is frequently not possible due to constraints of water depth (especially in marginal weather conditions). For these reasons, analyses of dye patch releases have been carried out with the following objectives:

- Direct observation of plume width, direction and rate of plume advection
- Estimation of horizontal dispersion coefficient for use in quantitative modelling

The derivation of dispersion (or diffusivity) parameters, from either dye or drogue studies, is generally based on a Gaussian representation of plume or patch

processes (Lewis 1997) which assumes constant mass in an increasing volume, resulting in concentration distribution in a given direction approximating to a Gaussian function in which spread can be quantified as variance. Variance (σ 2) over time of either peak concentration in the patch, or more usually patch width estimated from a single transect across the patch, can be related to a time-dependent "instantaneous" Fickian diffusivity (K, m^2/s):

 $K = \sigma^2 / 2t$ (Elliott et al 1997)

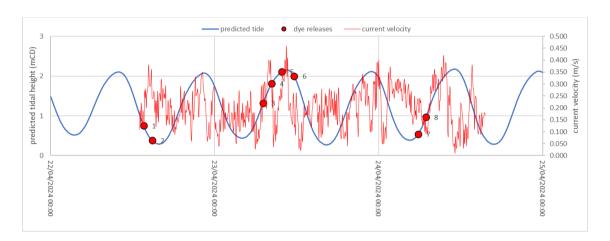
Where, σ^2 is estimated from Gaussian parameters and t = elapsed time between dye release and start of transect (s).

These analyses can be made from single transects (elapsed time around 1-2 minutes) and minimise experimental errors.

A subset of data from transects selected as representative over the separate patch releases have been selected. For each selected transect, the transect track was plotted to check for reasonable linearity, the concentration profile plotted to check for baseline drift and approximation to a normal curve, the X-Y location of peak concentration identified, and cumulative along-track distance from start of the transect calculated. The variance of fluorescence along the transect, σ^2 (m²), was calculated at distances corresponding to a 1s measurement interval for each transect using an Excel spreadsheet as:

$$\sigma^2 = \begin{array}{ccc} \Sigma c x^2 & & \left\langle \Sigma c x \right\rangle^2 \\ \Sigma c & & \left\langle \Sigma c \right\rangle^2 \end{array}$$

Where, c = fluorescence


x = along-transect distance (m)

Time-dependent "instantaneous" Fickian diffusivity (K, m²/s) was then calculated as described above.

Results

ADCP data is summarised as HGdata_analysis_v7.xlsx summary sheets in Appendix 1.

Current velocities, averaged over 5min, recorded during each dye release are shown in Figure 4. A range of velocities was recorded for each release: these were moderately high in some cases, notably release 5 (mean 0.333 m/s).

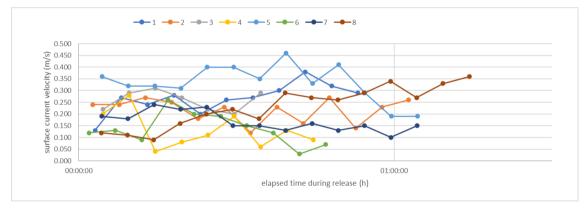


Figure 4. Sub-surface current velocity time series recorded during each dye release

Individual patches were recorded over elapsed times varying from 00:01:42 to 01:13:07 hours, and distances from the release point of 5-1199 m.

Advection paths of dye patch centres (Figure 5) tracked generally consistent with tidal vector direction. Advection velocity and range were consistent with cumulative flow vectors from ADCP data (maximum advected distance for releases 1-8, 282 – 1273 m).

Recorded width (quantified as length scale, $2\sqrt{3} \sigma$ (m)) of individual dye patches generally increased consistently over time following release (Figure 6); occasional

outlier values result from fragmentation of the patch or from difficulties in locating the patch centre at longer elapsed times.

From a total of 115 transects over the eight releases, measured Fickian diffusivity varied from $0.00097 - 1.66 \text{ m}^2\text{/s}$; mean $0.101 \text{ m}^2\text{/s}$, median $0.044 \text{ m}^2\text{/s}$ (Figure 7). The best-fit regression curve for all data points was K=0.007 $t^{0.2677}$, r^2 =0.024.

In general, diffusivity reflected expected patterns of variability and was comparable between individual dye patch releases. Fickian diffusivity increased over the duration of an individual release. There was little evidence of any systematic variation in relation to recorded current velocity or tidal cycle.

Drogue tracks (Figure 8) in releases 1 - 6 were broadly similar to dye patch tracks in terms of both direction and advection velocities.

During drogue release 7, duration 08:07h, two drogues were lost and the gps tracker on one drogue failed after 04:22h. The remaining drogue was followed during rapid advection on the ebb tide through Yell Sound, over a cumulative distance of 14.6km.

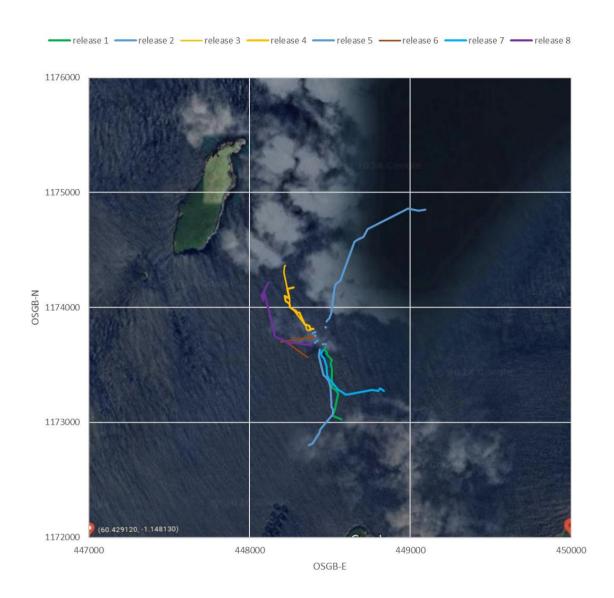


Figure 5. Advection paths of dye patch centres over release periods

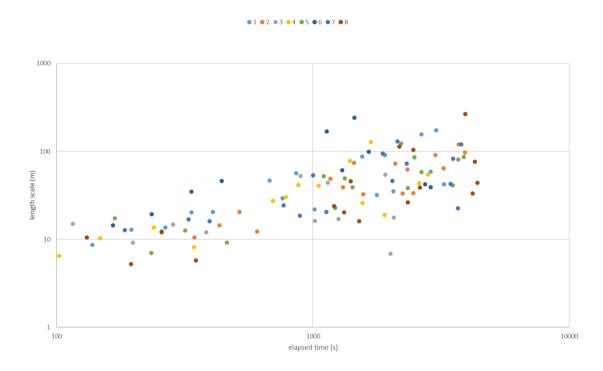


Figure 6. Dye patch width as a function of elapsed time

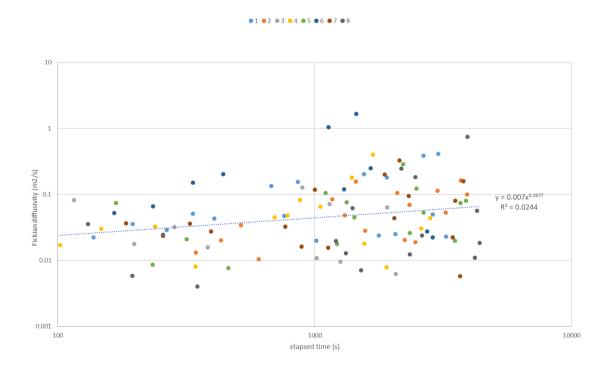


Figure 7. Fickian diffusion as a function of time (all patch transects)

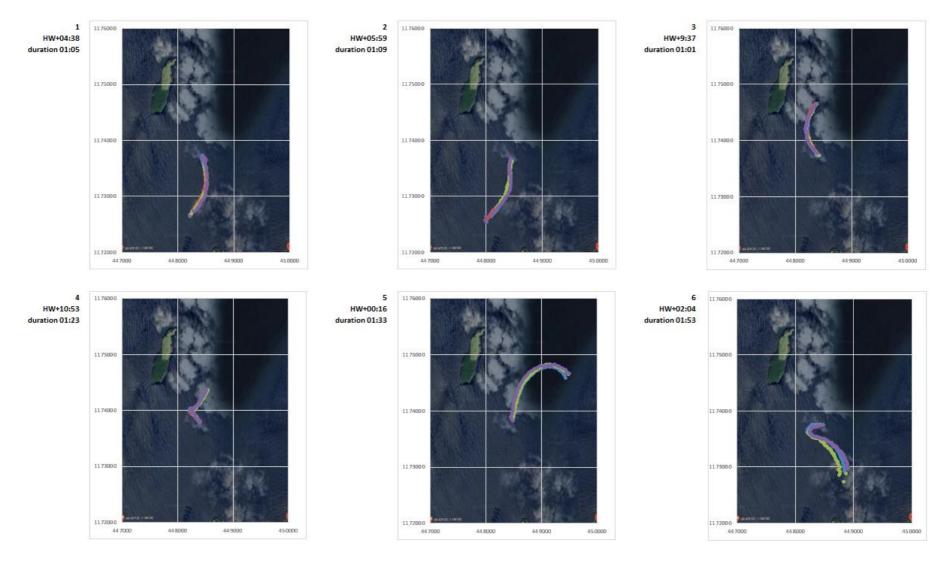


Figure 8. Drogue tracks, releases 1 - 6

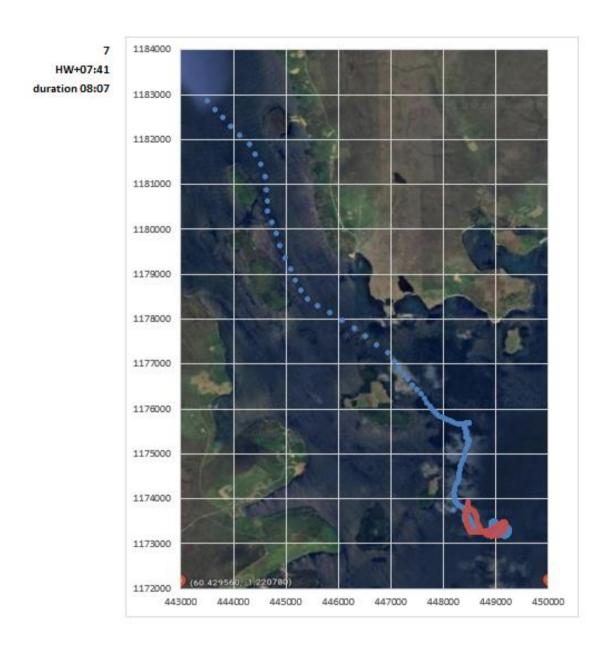


Figure 9. Drogue tracks, release 7

Discussion

Overall, dispersion characteristics of the site are typical of a site with relatively high tidal energy and significant exposure to wave action. The major tidal axis measured by the ADCPs was 340-345°G, consistent with advection tracks of dye patches and drogues. Mean velocities were also comparable (0.200-0.205 m/s for ADCPs and 0.225 m/s for dye patches). It is therefore considered that tidal conditions during the dye releases were representative for the site and that wind had relatively little influence on patch advection.

The magnitude of measured horizontal diffusivity, K, is comparable to the default value of 0.1 m²/s (mean 0.101m²/s, median 0.043 m²/s, range 0.0010 – 1.66 m²/s). 25.4% of measured values exceeded 0.1 m²/s; 74.6% were below this default value. The magnitude is also within the range of AMSL unpublished data from 1435 transects at eight representative sites (upper Loch Fyne, inner Moray Firth, exposed coastal Orkney, Sound of Gigha, Loch Ryan, North Channel, outer Loch Carron, Stornoway harbour) in the range 0.0003 – 0.903 m²/s, overall mean 0.035 m²/s.

As noted above, there was little evidence of any systematic variation of diffusivity in relation to recorded current velocity or tidal cycle.

Values of K vary with time; as also observed at other sites (approximately an order of magnitude over the duration for which releases were tracked, around 1h). This is illustrated on an Okubo plot (Figure 10), which demonstrates that extrapolation of the measured trends over time durations relevant to modelling (e.g. 12.5h tidal cycle; 72h duration of BathAuto for azamethiphos) predicts values of K slightly exceeding the default equivalent to $0.1 \text{m}^2/\text{s}$.

Recommendations

Current implementations of AutoDepomod, NewDEPOMOD and BathAuto do not allow for time-dependent values of horizontal dispersion which more accurately reflect site-specific dispersion over relevant time periods than the default 0.1 m²/s. Although the measured diffusivity was very similar to default values, future modelling for the Fish Holm site using these models should use the relationship derived above, K=0.0007 tº.2677 (m²/s), to predict an appropriate value of K for an appropriate time period for the specific model. For particulate modelling using AutoDepomod and NewDEPOMOD, it is suggested that this should correspond to half the average settling period of faecal particles released at pen-bottom. For bath treatment modelling using BathAuto, this would correspond to half the relevant model period; i.e. 1.5h for cypermethrin and deltamethrin (K=0.064 m²/s), 36h for azamethiphos (K=0.145 m²/s).

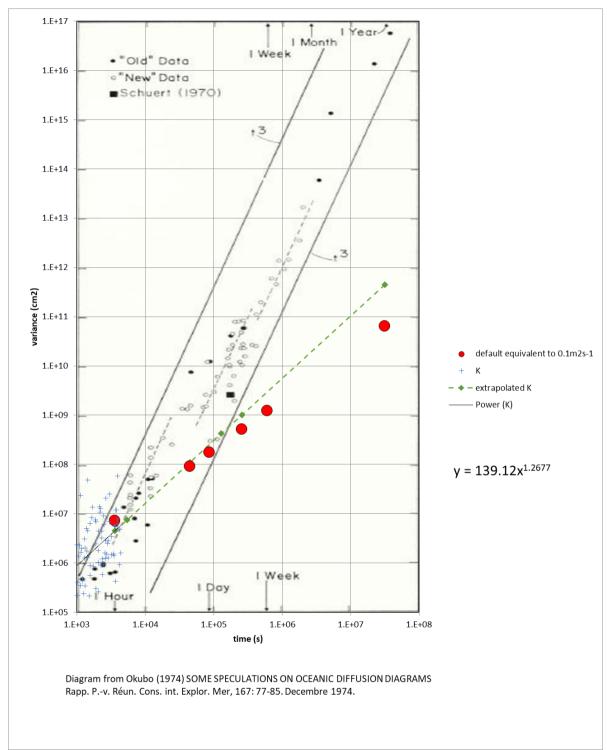
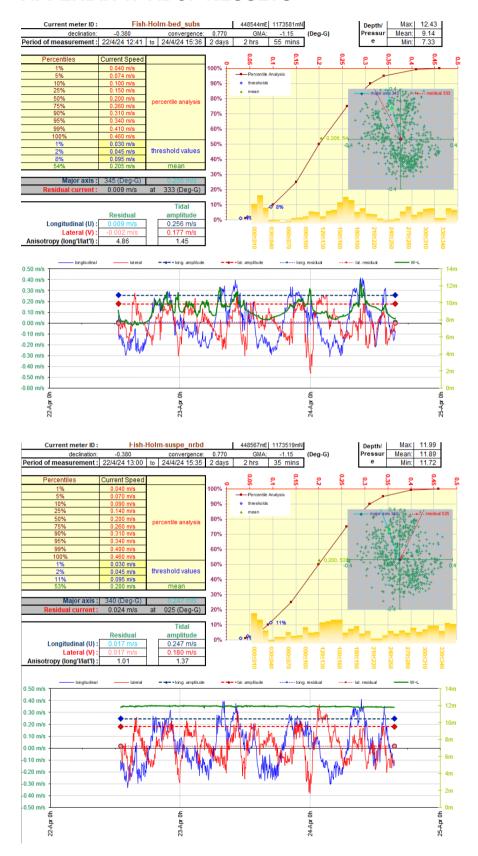


Figure 10. Okubo plot showing data (equivalent variance in cm²) from present study and extrapolated values

References


Cromey C, Provost P, Mercer D & Black K (2001). Measurement of dispersion in the area surrounding the Iggesund forestry pier, near Fishnish Bay, Sound of Mull. Data report prepared for Iggesund Forestry (Ltd) June 2001. Dunstaffnage Marine Laboratory.

Elliott, AJ, Barr, AG & Kennan D (1997). Diffusion in Irish Coastal Waters. Estuarine, Coastal and Shelf Science 44, 15-23

Lewis R (1997). Dispersion in Estuaries and Coastal Waters. John Wiley & Sons ISBN 0471961620

Morales RA, Elliot AJ & Lunel T (1997). The influence of tidal currents and wind on mixing in the surface layers of the sea. Marine Pollution Bulletin 34, 15-25

APPENDIX 1. ADCP RESULTS

